
J .  Fluid Mech. (1!372), uol. 53, part 4, pp. 647-655 

Printed in  Great Britairr 
647 

The flow caused by the differential rotation of 
a right circular cylindrical depression in 

one of two rapidly rotating parallel planes 

By M. R. FOSTER 
Department of Aeronautical Engineering, The Ohio State University 

(Received 20 October 1971) 

The flow induced by the differential rotation of a cylindrical depression of radius 
a in one of two parallel rigid planes rapidly rotating about their common normal 
at  speed Q is studied. A Taylor column bounded by the usual Stewartson layers 
arises, but the shear-layer structure is rather different from any previously 
studied. The Ei-layers ( E  = v/Qa2) smooth the discontinuity in the geostrophic 
flow, but the way in which this is accomplished is related to the possible singu- 
larities of the E+-layer solutions. The fact that the &-layer is partially free and 
partially attached to a vertical boundary accounts for the new joining conditions 
for the $-layer. The drag on a right circular cylindrical bump in uniform flow is 
given in addition to some general comments on the applicability of these joining 
conditions to 1,he motion of an axisymmetric object of quite general shape. 

1. Introduction 
In  recent years, several investigators have presented solutions to the Navier- 

Stokes equations for motion in rigidly rotating incompressible fluids. An im- 
portant feature of many of the problems, owing to the existence of a Taylor 
column, is the shear-layer structure laterally bounding such columns, first given 
careful study by Stewartson (1957). Such shear layers may be free, as in the 
work of Stewartson (1966) and Moore & Saffman (1969a), or attached to a solid 
vertical boundary; they may in some circumstances exert some degree of control 
over the geostrophic flow (Moore & Saffman 1969b). 

The geometrical configuration of the problem studied here is given in figure I .  
In  one of two rapidly rotating parallel plates separated by a distance ah  there 
is a right circular cylindrical depression of radius a and depth ad. Let the base 
of that cylinder be denoted by R, and the cylinder of fluid above it by D,; let 
the part of the lateral boundary of that cylinder coincident with the solid 
boundary be R,. D, is the remainder of the domain exterior to D, and is bounded 
beneath by 13,. We shall use non-dimensional cylindrical polar co-ordinates 
( r ,  0, z )  throughout, with the associated velocity components (zc, v, w). We shall 
consider the flow induced when R, rotates at  speed Q( 1 + F )  and R, at speed 
Q( I + E')  in the limit E -+ 0, with E and e' small; the angular rotation rate of the 
remainder of the container is Q. 

In  $2, we give the solutions in D, and D,, which exhibit the characteristic 
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discontinuities on r = 1. The smoothing of these discontinuities by the Stewartson 
shear layers is discussed in $ 3. These layers are quite different from either of those 
studied by Stewartson (1966) or Moore & Saffman ( 1 9 6 9 ~ )  because they are free 
shear layers for x > 0, but fixed on the boundary R, for z < 0. The structure of 
these +-layer solutions and, hence, the matching conditions for the &layers, 
which are rather different from any relating to the problems detailed by Moore & 
Saffman (1969a), are given. 

The solutions in $ 3  are difficult since, as has been known for some time, the 
+-layer problem is not well posed, although some specification of possible singu- 
larities in the domain can be given. In  $4, a technique first used by Moore & 
Saffman ( 1 9 6 9 ~ )  is applied to elucidate the kinds of singularities possible near a 
convex (270") corner. The results given in $ 3  do not degenerate to those of 
Stewartson (1957) when 6 3 d/h is small. In  $4, it is indicated that only so long 
as 6 < E!t will Stewartson's result be recovered. A solution to the +-layer problem 
is given at the end of $ 3 and is valid for Eg < 6 < 1. 

Once the above problem has been understood, it requires only a small exten- 
sion to deal with rectilinear flow past a cylindrical bump of height ad. The drag 
is found to be O(pUadh-!tEd). Finally, $ 6  contains some comments on the 
proper procedure for joining $-layers for an object of quite general shape. 

Geometrically related configurations to those above have been studied experi- 
mentally (Taylor 1923; Hide & Ibbetson 1966; Hide & Titman 1967)) but, 
whereas qualitative agreement is easy to see, quantitative comparison is not 
possible since the parameter range in the experiments is not in accord with the 
restrictions on the analysis which are max ( E ,  8') < Ekh*, d/h 9 E3. 

2. Formulation and interior solution 
The equations of motion for a fluid in a co-ordinate system rotating at speed 

!2 are v .u  = 0, ( 2 . l a )  

Du/Dt + 2k x u + Vp = EV2u, (2.1b) 

where velocities have been made non-dimensional with Qa, lengths with a, and 
k = Q/Q. As was described in $1, we seek a solution to (2.1) subject to the 
boundary conditions 

u = s k x r  on R,, u = 0 on R,, (2.2a, b )  

u = e ' k x r  on A,, u = O  on x = h ,  (2.2c, d )  

so that u is actually of order max ( E ,  d). If 6 and 8' are sufficiently small, as stated 
in $1, then the first term of (2 . lb)  will be small compared with the second and 
hence negligible. For purposes of this analysis then, we replace (2.1) by 

v . u  = 0, 

2 k x u + V p  = EV2u. 

An essential feature in the construction of solutions to (2.3) with (2.2) as 
E - t  0, even in the thin vertical shear layers (Jacobs 1964), is the compatibility 
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FIGURE 1. The geometry of the problem. Lengths have been made dimensionless with a ,  
the radius of the mrface R,; broken lines represent the shear layers. D, and D, are the 
regions interior and exterior to r = 1 respectively. 

condition on the velocity components imposed by the structure of the Ekman 
laver on horizontal surfaces: 

i a  w = +(n.k)E* [r -- ar (r(v-vB))--- (2.4)' 

where n is the outward normal to the horizontal surface and vg denotes the 
swirl velocity of the boundary. This constraint must, therefore, be satisfied on 
R,, R, and z = h, so long a.s horizontal rates of change are o(E-4). 

The usual expansion of (u ,p )  in rational powers of E and substitution in (2.2)- 
(2.4) gives the solutions 

u = 0, v = &r, w = -&E* in D, 

and u = v = w = O  in D,. 

These solutions were given first by Stewartson (1957). As one might have 
expected, the interior solutions are independent of e', the effects of this parameter 
being confined to  the vertical shear layers. 

3. The vertical shear layers 
The solutions valid in D, and D, given in $ 2  exhibit the now familiar feature 

of a Taylor column, and its associated discontinuities on r = I ;  such discon- 
tinuities are to be smoothed by Stewartson layers of thicknesses Et  and E*. 

If we use upper case letters for the layers of thickness Ei, then the equations. 
valid in that layer, which are geostrophic apart from the retention of azimuthal 
shear. are 
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where x = r - I. From these equations one finds that 

The Ekman conditions (2 .4 )  for the layer on r = 

-iEtaV/ax on 

g ~ & a v / a x  on 
W = (  

which when combined with ( 3 . 1 )  and (3 .2)  give 

1 d3V dV +Exh-- - = 0. 
dx3 dx 

l+ take the form 

z = h, 
z = 0, 

(3 .3)  

The solution of (3 .3 )  which matches the solution in D, from $ 2  is 

V = Ae-px, p2 = 2/hE*. (3.4) 

V = $e+Begx, q2 = 2/h,E&, (3 .5 )  

The layer on r = 1- has the solution, valid to O(E*), 

where h, E h + d and A and B are constants not yet determined. 
Stewartson (1966) has shown how to determine A and B by use of the equa- 

tions for the Etlayer interior to the two E*-layers; Moore & Saffman (1969a)  
have used this technique to study the flow induced by a rising disk. Stewartson 
(1957) found that for d = 0 the correct conditions for determining A and B are 
that V and d Vldx should be continuous on x = 0. Moore & Saffman (1970) found 
that the jump conditions on the (three) &layers for the rising disk are continuous 
velocity and zero total shear stress on the column, the latter of which means that 
d V/dx is discontinuous at x = 0. Neither of these jump conditions is appropriate 
here because of the no-slip condition on R,. 

The equations valid in the shear layer of width E* are 

aiz a3tz aa 
- - 2 - - ,  - = 2 -  

ax a73 ax9 

a3z _-  

where 7 = x /E)  and a tilda denotes a function of 7 and x .  For 7 large, fi and 8 
must match the &layer solutions given previously. Assume that the +-layer 
expansions begin as 

V" = iv0 + E i b ,  + EQv, + . . . , 
iz = W,+E~W,+E*W~+ ... . 

Now, (vo, w,), (wl, wl) and (w2, w2) each independently satisfy (3 .6 ) ,  so putting 
x = E*7 into (3 .4 )  and (3 .5 )  and expanding for E+O, with 7 fixed, gives the 
matching conditions 

1 v , w A  as ~ - + + c o ,  

v , - i e + B  as q-+-co, 
( 3 . 7 a )  

(3 .7b )  1 wl'- - (2 /h)+A7 as 7 -f +a, 

v1 - (2/h0)4B9 as 7-f --co 
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for the first two terms of the asymptotic solution; here A and B are taken to be 
O( 1 ) .  Expanding the boundary condition ( 2 . 2 ~ )  in similar fashion gives 

wo = €1 ,  wo = a2wolap2 = 0, (3 .8a )  

wl = w1 = a2w1iap = o (3 .8b)  

on p = 0, - d  < z -= 0. Boundary conditions on R,, R, and z = h are found by 
writing the Ekman condition (2 .4)  in terms of Q-layer variables and expanding 
in powers of EA; the result is 

w, = w, = 0 on horizontal boundaries. (3 .9)  
We now consider the (vo, w,) and (w,, w,) problems in order to find A and B. 

The (v,,, wo) problem 

This problem is the solution of 

(3.10a, b )  

subject to (3 .7a ) ,  (3 .8a )  and ( 3 . 9 a ) .  Integrating (3 .10a)  from z = 0 to h and 
using ( 3.9 a) yields 

Similar integration from x = - d to h gives 

By integrating again, with respect to p ,  with reference to the matching conditions 
(3 .7a ) ,  we obtain 

wodz = (&+B)ho for p < 0. 

Now, on p = 0- 

/:dwodz = / o a w o d z + f h v o d z  0 = (&+B)ho, 

but 

by (3 .8a ) ,  so 

However, on p = O+ 1; wo dz = Ah 

and since wo must be continuous on p = 0,O < x < h, we have 

s’d+AF, = (++B)h,, (3 .11)  

which is a single equation relating A and B. Hocking (1967), in a similar problem, 
proved that the only non-singular solution to the (w,, wo) problem is wo = constant. 
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There is no reason a priori why (w,, wo) should be non-singular. However, in $4 
we show that the minimum singularity hypothesis requires that (wo, wo) should 
have no singularity at  7 = z = 0. Hence 

v, = €’, wo = 0 (3.12) 

is the solution. Then, the matching conditions (3.7a) give 

A = &+B = €’, (3.13) 

which makes (3.11) an identity. 

The (vl, wl) problem 
Here, we seek a solution to 

(3.14) 

subject to (3.7b), (3.8b) and (3.9b). Integration of the equation as was done for 
(v,, wo) gives just s” %/ dx = 2h0B+2hA, 

-a a7 1]=0 

which imposes no additional constraints on A ,  B. A simple solution, which seems 
to be the only non-singular one, is v1 = cy, w1 = 0. Matching by use of (3.7b), 
however, does impose an additional restriction on A and B. However, in 3 4 we 
show that w1 behaves like I T ] - +  as y+ 0 on z = 0;  so v1 = c7 is unacceptable and 
there is thus no contradiction with (3.13). 

We note that determination of A and B rests on whether v,, or vl is singular; 
regularity of both functions at  z = y = 0 imposes three conditions on A and 
B. Hence, either v, or vl, or both, must have a singularity. It is only the analysis 
of 3 4 that makes possible the choice v,, regular, v1 singular. 

Reasons are given in $4 for expecting that these jump conditions and a 
singular solution for (vl, wl) are valid for all d / h  $- I#*. If d / h  < 1 but still large 
compared with E*, the vl solution is easily obtained by noting from (3.14) that 
since 

d3S”v1dz = 2w1(7, O ) ,  
dy3 0 

a generalized function boundary condition 

w1(7,O) = (+h)&(€- 46’) S’(7) 

will satisfy (3.7b) and (3.13), and is hence equivalent to the l y l d  singularity 
mentioned above. Equations (3.14) are then easily solved in 171 < 00, 0 c z < h, 
and to leading order in d / h  < 1 we have 

k dk, 
1 h i  sinh [+k3(z - h)] 

w - - - 2ni (-) 2 (E--4€’)/ -m eik? sinh 4k3h 

which may easily be evaluated by the method of residues so long as z > 0. The 
motion given here is essentially that due to a doublet at y = z = 0. Solution of 
the (vl, wl) problem for d = O(h)  has so far proved too difficult, owing to the 
peculiar shape of the domain. 
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4. The singularities of the +-layer equations at a convex corner 
M7e seek solutions to the +-layer equations (3.6) in the domain 

x > 0, --oo < r] < co; z < 0,  --oo < r] < 0. 

a 3 x l a q  = -2 iaxlaz ,  x = w+iv, 
They may be combined into a single equation: 

as was done by Moore & Saffman ( 1 9 6 9 ~ ) .  In  $ 3  of their paper similar solutions 
are given. With 7 = r](2/2)*, they show that, provided m < 0, 

= AxmH,(7) for z > 0, (4 .1)  

In  x < O it is convenient to use 7’ = ~ ( 2 1  - x) * ,  so that r‘ < 0 in the domain of 
interest. Since they are interested only in doubly infinite regions, Moore & 
Saffman do not, write down the solution valid in x < 0, r ]  < 0, but all the elements 
are there and, omitting the algebraic details, we have 

where an overbar denotes a complex conjugate. Now, the boundary conditions 
are all homogeneous : 

w = O  on z = O , r ]  > 0, 

v, w continuous on x = 0, r] < 0. 
(4 .4 )  

(4.5) 

I v = a2V/ay2 = w = 0 on 7 = 0, z < 0, 

Prom (4.3), clearly x = 0 on r] = 0, x < 0 if B + C = 0. Thus (4.3) becomes 

x = ( - Z ) ~ B [ B ~ ( T ‘ )  -Bm(e-%’)] for x < 0. 

Now, on r ]  = O:, x < 0, 

a2v/ar]2 = ( - x)m-”BI 2Qgr(# - m) sin #n cos (/? - in), 

where B = 1231 eip. Thus 

/? = Qn + (k + $) r, k an integer. 

cc = - +mn + (j + 4) n, j an integer, 

(4 .6)  

(4 .7)  

The condition .that w = 0 on z = 0, r] > 0 gives, as in Moore & Saffman ( 1 9 6 9 4 ,  

with A = IAI eiu, and continuity on x = 0, r ]  < 0 gives 

a-$mr = 47r+/l++m71+2nn. 

Now, (4.6)-(4.8) may easily be combined to give 

m =  -1-21 3 7 9 ( I  = - I , O ,  122). 

These singularities are associated with the interaction of the *-layer and the 
Ekman layer near r] = z = 0. By using the arguments given by Moore & Saffman, 
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m =-13 m = - g  a 1  
E 3  
E-U 

m = -L 

E."- . n = l  8 4  

21 

. n = o  E-A E-+ 4 8  

8 4  
E-' 

1 2  

m = 2  E+ 1 E+ 

TABLE 1. The swirl velocity associated with each singularity 

we see that, near where it joins to the Ekman layer, the &-layer solution Ex* 
will have size E*+gm. Hence, we can construct table 1, which gives the size of 
the swirl velocity associated with each singularity. 

We note here that the complete expansion of the &-layer solutions should not 
be as given in 5 3, in powers of EA,  but rather in powers of E ~ c .  Such a complica- 
tion is unnecessary in this context since, though a singularity may arise first in 
the E A  term, the matching conditions found from (3.4) and (3.5) make all 
such solutions zero except the ones corresponding to EA, E S ,  . . . . 

According to Moore & Saffman's principle of minimum singularity, the swirl 
velocity should be no greater in the shear layers than in the geostrophic flow. 
Hence, only singularities that give swirl velocities of O( 1) or smaller are accept- 
able. Therefore the n = 0 solution must be regular, the n = 1 solution must have 
an m = - and 
m = - Q singularities, etc. 
If d < h, then the appropriate x scale near the corner is 6 = d/h. The +-layer 

equations are invariant under the transformation (7, z )  ++ (q/S*, x/S),  so the effect 
of having 6 4 1 is to multiply each element in table 1 by 6". A little examination 
shows that the n = 1 problem will always be singular if 6 > ES; certainly the 
analysis can in any case be valid only for 6 $ E* (the requirement that the 
depression should be deeper than an Ekman-layer thickness). Thus the evalua- 
tion of A and B given in $ 3  appears correct for all 6 B E*. Obviously, when 
6 < E8 the +-layer 'sees' a flat-bottom boundary and Stewartson's (1957) jump 
conditions for the &layer in such a geometry are recovered. 

singularity, the n = 2 solution must contain both m = - 

5. Flow past a right circular cylinder 
Suppose fluid flows at speed U( = sou) past a right circular cylinder of height 

ad resting on one of two parallel planes situated a distance ah apart. The fluid 
over the cylinder is stagnant (if d is not too small; see Moore & Saffman (1969b)), 
as it is over a hemisphere in rectilinear flow (Jacobs 1964). 

The geostrophic flow in r > 1 is given by an harmonic function 

p = - 2s sin 8(r - r- l) ,  

and the speed along r = 1 is 2s sin 8. The $-layer solutions are 

2ssin8+Ae-px for r > 1, 

Beqx for r < 1, 
V = (  

where all of the symbols have the same meaning as in 5 3 except that h, = h - d 
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here. Using the jump condition (3.13) clearly leads to B = 0, i.e. there is no &- 
layer in r < 1. Further, 

2ssin6+A = 0, 

hence v = 2esinB(1-e-pz) for r > 1. 

The drag arises from shear stress on the side walls and is given by 

D = n,uUad(2/h)4E-f. 

6. Final remarks 
We have seen that, if the Q-layer solution is expanded as 

v = vo+E-lhl+Eb,+ ..., 
a weak singulaxity vl - 171-5 for y-+ 0 on z = 0 arises in the vl term if the Q- 
layer contains a 270" convex corner. Further, jump conditions for &-layers 
containing such a Q-layer may be entirely determined from the vo solution, 
which is reguhr. This result stands in contrast to the results for a 360' corner 
(Moore & Saffman 1969a), where, though v1 is singular there too, consideration 
of the v1 solution is necessary to deduce a second jump condition. 

Thus it can be quite generally stated that for the motion through a rotating 
fluid of an axisymmetric object whose shape is given by x = + f ( r ) ,  withf( 1) = 0, 
whether f'(1) is O(1) or infinite, the $-layers (or quasi-geostrophic layers of 
whatever thickness) are joined by requiring V ( x )  to be continuous and zero net 
shear stress on the column, as was determined by Moore & Saffman (1969a). 
However, if f(1) $: 0 and there exists an O(1) region on r = 1 along which 
f ' ( 1 )  = co, then the quasi-geostrophic layers are to be joined by requiring 
V(x )  to be continuous and also V ( 0 )  = vB(l),  where vB(r) is the swirl velocity of 
the object. 

The author gratefully acknowledges the suggestion of this problem by 
Professor K. StJewartson and his continuing interest in it during the course of 
this study. Thanks are also due to Professor Burggraf for his interest and 
several suggestions. 
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